
569 

7. SAZONOV V.V., Periodic solutions of differential equations with a large parameter,describing 
the motion of generalized-conservative mechanical systems, Izv. Akad. Nauk SSSR, MTT, 3, 

56-65, 1986. 

Translated by D.E.B. 

PMM U.S.S.R.,Vol.52,No.S,pp.569-579,1988 0021~8928/88 $lO.OO+O.OO 
Printed in Great Britain 01990 Pergamon Press plc 

ALGEBRAIC OPERATIONS COMPATIBLE WITH THE DYNAMICS 
OF A NON-LINEAR DISCRETE CONTROL SYSTEM* 

A new approach is developed 
discrete control systems 

A.I. PANASYUK 

to the analysis and synthesis of non-linear 

z [li + i] = f (k, z [k], u[k]), z cs R”, u se R”’ (0.1) 

first proposed in /l/ for continuous non-linear systems. The underlying 
idea of the approach is to redefine the addition of state and control 
vectors and multiplication of vectors by scalars in such a way that the 
system becomes linear in the new linear space. As an application, a 
description is given of a class of non-linear control systems which are 
isomorphic to their linear approximations, and explicit formulae for this 
isomorphism are presented. This makes it possible to construct a control 
with prescribed dynamic characteristics for the linear approximation 
system, using the well-developed theory of the linear case; this control 
is then converted via the isomorphism into a control for the non-linear 
system, generating the required closed-loop dynamics of the system, by 
introducing linear feedback that compensates for the non-linearity of 
the open-loop system. 

1. The equation for the compatibility of the addition law in R-xRn with 
the system dynamics. We seek a canposition law smXk on the set R” 
mapping Ran + R": 

x"=.r @*Q?%p(k, z, z') 

Here k is a parameter and .r,x‘ the independent variables. 

Similarly, GUk: R2” -+ R” : 

uW = u &&kU’ 2 I$ (k, 5, x’, u, u’) 

Here k, x, x’ are parameters and U,U' the independent variables. 

Finally, Ok: R%+n) _+ Rmtn: 

(u, cc) ok (u’, x’) cf (u B,~u’, z c&~cz’), (u, x) E R”‘+” 

in the form of a 

(1.1) 

(1.2) 

(1.3) 
Whenever there is no need to specify k we omit the superscript k of ek- 
Let W denote the set of all pairs of functions u(k), x(k), a< k< b, satisfying (0.1). 

Infinite end-points a = - 00, b = 00 are admissible. For any (U Ikl, z Ikl), (u’ Ikl, x’ [kl) ‘_ W, 
we define 

(u [kl, .z lkl) iIj (u’ Ikl, z’ [kl) z (u Ikl &, u’ fkl, x [kl ‘:>& (1.4) 
I‘ Ikl\ 

*Prikl.Matem.Mekhan.,52,5,730-742,1988 
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Compatibility of ~I. with the dynamics of (0.1) means that 1 does not take us out of W, 
l.e., s”Ik+11=f(k,~d’Ikl, u”[kl). In view of (1.1), we obtain 

9 (k -t 1, f (k, I. u). f (k. .r’. 10)) f (k. ‘p (k. z, d). Q (k, x. .C’, (1.5) 
u, u’)) 

Definition 1.1. We shall say that a composition law c- defined by (1.3) is compatible 
with the dynamics of system (0.1) at a time k if cp (k, I, .I!), ~41 (k + 1. 1. I’). 11 (k, x. d. IL, u’) 
satisfy (1.5) for all z, 5' C= R", U. u' E R"'. 

2. The equation for the compatibility of the multiplication of control and 
state vectors by a scalar with the dynamics of a system. We define O,,O, as 
mappings Rl’+l + R”, R”‘+’ -+ R”‘: 

.r’ = h Px% “zf p (k, h, .,-), u’ = h CJUku dz q (k, r, h, u) (2.1) 

Here h,x and il,u are the independent variables in the first and second definitions, 
respectively. We define 0 as a mapping R"'+"+1 + Rmf": 

h ok (u, 1.) d”’ (h(g,” u, hpxk x) (2.2) 

The compatibility of 0 with the dynamics of system (0.1) means that if (u 1121, z lkl) .-I 
W, then h 0 (u [k], x [k]) E W, i.e., .d [k + 11 = f (k, 1.’ [kl, u’ Ikl). By (2.1) , this gives 

p @ + 1, A, f (k. 2, u)) = f (k, p (k, h, z), Q (k, I, 1, u)) (2.3) 

Definition 2.1. We shall say that the composition law (3 defined by (2.2) iscompatible 
with the dynamics of system (0.1) at a time k if p (k, h, z), p (k + 1, h, XT), q (k, r, h, u) satisfy 
(2.3) for all hc R,ZE R”,uF R”‘. 

We shall refer to (1.5) and (2.3) as the compatibility equations. 
We now consider the relationship between a redefinition of algebraic operations compatible 

withthesystem dynamics and a linearizing change of variables. Suppose we have a linear 
control system 

y Ik + 11 = A Ikl y Ikl + B 1121 u Ikl, 5 E R”. u E R” (2.4) 

and there are given bijective mappings z--f y, u - u (y = H (k, z), u = V (k, x, u)) taking any pair 
y Ikl, u Ikl to a pair z [kl = H-l (k, y Ikl), u [kl = V-l (k, z lkl, u lkl) satisfying (O.l), where H-l, 
v-1 are the inverses of H,V. Then the operations defined by the formulae 

5" = z ,_ Ik Z' = H-’ (k, H (k, x) f H (k, z’)) 

z* = h oY-” I =m H-’ (k, hH (k, 2)) 

u cgCuk IL’ ._ V-’ (k, z”, V (k. Z, U) i- V (k, x’, u’)) 

h oUk u = V-’ (12, 1*. hV (k, I, U)) 

are compatible with the dynamics of system (0.1). It turns out that under very general assump- 
tions the converse is also true: given redefined operations @,,3, one can construct a 
bijective transformation H, V of system (0.1) tothe form of (2.4). The proof of this 
statement will occupy us for the rest of this section. 

Let us confine our attention to an autonomous system 

5 lk -6 II ~-- f (a- [kl, u lkl) (2.5) 

Let E denote the set R” with the operations &X, 0x7 and G the set of all pairs (I,u) 
i.e., the set R*+“‘, with the operations e, 0. For an autonomous system (2.5) the operations 
r3,. 0 /f‘ o,, 3. 0 X? "UI are assumed to be independent of k. In the linear spaces E,G, com- 
patibility of the operations 'I> , 0 with the dynamics of (2.5) means that the mapping f: G-w 
E is linear. 

Theorem 2.1. Let G,E be linear spaces, of dimensions n f m and n, respectively; 
let f:G+E be a linear mapping. Then there exists a one-to-one coordinate transformation 

+Y 1; q;;,:;; 1 G-3 

bringing system (2.5) to the linear form 

y Ik + 11 = Ay Lkl + Bu [kl (2.7) 

Here A and B are T8XTZ and n X m matrices, respectively. Throughout the rest of this 
section we assume that the assumptions of Theorem 2.1 hold. 

For the zero element 0=G we have 
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Hence h0,8,= 8,, i.e., 0, is the zero element of E. Choose a basis e,, . . ..e. of E and 
fix u*. 

Lemma 2.1. The vectors g, = (e,,u*), . . ..gn = (e,,u,) are linearly independent. 

Proof. Suppose the contrary: there exist Xi, x?$# o (I <:i <n) such that @y=lhi 0 (ei, II*)= 0, 
so that 

Therefore @!&hi 0 et= 0%, contrary to the linear independence of eti Here CD:_,, denotes 

summation from i=l to i=n. 
Each vector xfZ E is uniquely expressible as a sum X= @=i+h,(X)(&ej. Define a mapping 

h: E+G by 

h (X) = @T=I& (I) Q (ei, u*) 

Lemma 2.2. h is a linear mapping. 

Proof. For 
z = $;i& (I) Or ei, 5' = $!&lri (3') ox ei 

we have 

Hence h (Z a&r') = h (5) @ h (5'). 
Define operators G-+ G by the formulae 

P, (2, U) dz h (X), P, (5, u) dz (5, u) 3 (-1) 0 P, (x, u) 

!?he following proposition is a corollary of the definition of h(X) and the above lemmas 
(see also /2/). 

Lemma 2.3. P, and P, are projections, and G is the direct sum of the linear spaces P,(G) 
and P, (G). 

In P,(G) there exist m linearly independent vectors g,,+lr...,g,,+,,,. The vectors gi(l,< i< 
n + m) form a basis of G. Any vector (X,U)E G is uniquely expressible as a sum 

(I, u) = @:Ly li (5, u) 0 gi (2.8) 

Lemma 2.4. hi (X, U) = hj (5) for 1 < i < t?. 

Proof. By Lemma 2.3, 

px Cz, u, = @~&&(Zv u) 3 gi 

By the definitions, 

P, (~7 u) = h (I) = @;_&i(z) 0 gi 

Since the g( are linearly independent, this completes the proof. 

Proof of Theorem 2.1. Write the action of f on G in terms of matrices A = [ajilt B = 
[bjil : 

f (gd = ~&z~~ Orej, 1 < i < n 

f (gd = @&IbjtO,ei, n + 1 < i < n 4 m. 

Since f is linear on G, Lennna 2.4 and (2.8) imply that system (2.5) can be rewritten as 

@.Gj=llii (J [k + I]) oxej = X [k + I] = @F”;LIAj Q&j 

Aj= i&ajihi (z [kl) + i~~Ib,i~i (~-.Ikl. u IN) 

Since ej(l,( j < n) form a basis in E, this system is equivalent to the system 

h,(zIk411)=Ri, l<.i<n 
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and this, by (2.6), is equivalent to (2.7). 
It should be noted that investigation of the compatibility equations is evidently more 

convenient than a direct search for a linearizing change of variables. For example, this 
approach has enabled us to develop an explicit description of a whole class of control systems 
admitting of linearizing transformations (see below). 

3. Conditions for the solvability of the compatibility equations. We will 
confine our attention henceforth to the following system, which is linear in the control: 

5 Ik -+ 11 = x” (k, z [kl) + y (k, z lkl) u lkl, z E R”, u E R” (3.1) 

Fix k E (a, b - 1) and let r2 := Im Y" (k,z Ikl) denote the image of R’” under the linear mapping 
y" (k, I Ikl): R”’ --f R”. Eq.(1.5) for (3.1) is 

q (k + 1, X” (k. .z) -t Y” (k, x) u. X” (k, 2’) + Y” (k, x’) u’) = 

x0 6, v (k, z, 2')) + Y" (k, v (k, 5, d))$ (k, x, x’, u, u’) 
(3.2) 

Definition 3.1. We shall say that Eq.(3.2) is solvable at a time k if there exist func- 
tions cp (k, x, I’), ‘p (k + 1, x, r') of x, z' e R” and a function 'II, (k, 5, d, u, u’) of 5, I', U, u' 
satisfying Eq.(3.2) for all s,z'~ R”, U,U’E Rm. 

Put 

Lemma 3.1. Eq. (3.2) is solvable at time k if and only if there exist functions 'p (k, x, 
r'), cp (k + 1, 5, r') of x, x1 E R” such that for all x, x' E R” 

cp (k + 1, x” (k, x) + rx, X” (k, 5’) + I’,,) - cp (k + 1, x” (k, (3.3) 

5)~ x0 (k, z')) E rry(k.s,x’) 

cp (k -t 1, X0 6% 4, X” (k, I’)) - X” (k, up (k, X, x’)) E rQck.l-,xpj (3.4) 

Proof. Suppose that Eq.(3.2) is solvable. Then if IL= u'= 0 and UC (k, I, 5') = $ (k, 5, z', 0, 
0)ERm 

cp (k -r 1, X0 (k, z), X0 (k, d)) = X” (k. cp (k, z, z’)) $- (3.5) 

Y” (k, cp (k, L, Z’))U” (k, 5, J’) 

This implies (3.4). Subtracting (3.5) from (3.2), we see that for u,u'~~m 

'p (k + 1, X0 (k, z) i Y” (k, z)u, X” (k, 5’) + Y” (k, z’)u’) - (Mi) 

Cp (k + I), X0 (k, I), X”(k, I’)) = y” (k, ‘P (k, I, z’))I$ (k, z, r’, u, u’)- 

u” (k, 5, s')l 

This implies (3.3). 
Conversely, suppose that (3.3), (3.4) 

I, 5') satisfying (3.5). Adding (3.3) and 
X" (k, m (k. 3, 2')) C rrp(k,x, xr). Hence there exists 

Henceforth we shall consider only the 
ficients of the controls are constants: 

hold. Then by (3.4) there exists a function U' (k, 

(3.5) , we obtain 'p (k+ 1, X0 (k, J) + 1‘,, X” (k, I’) + rx,) -- 

a function $J satisfying Eq. (3.2). 
special case of system (3.1) in which the coef- 

x[k+ l]=X’(k,z[kl)+ Y”u(k], O<m<n 

Y1,, . ., Y,, 

(3.7) 

. . . , rankY=m (3.8) 
Y Y ml,“‘7 *In 

If Y = Y (k,x) and rankY (k,x) = m then, introducing a new control v = Y (k,x)u, we 
reduce system (3.1) to theform of (3.7), (3.8). 

Eq.(3.2) for system (3.7), (3.8) can be rewritten in the form 

'P (k -t 1, X0 (k, z) + I’%, X” (k, 5’) + You’) = (3.9) 
X” (k, ‘P (k, 5, z’)) + Y”cp (k, z, z’, u, u’) 

Theorem 3.1. Eq.(3.9) is solvable at time k if and only if there exist functions 'P (k, 
z, z') E R”, ‘P (k + 1, x, x’) E R” of I, x' such that the coordinates 'pi (k +I, x,x’) with m + 
I-< i f n are independent of the components Xj, Xj', 1 < j < m, X, X’ E X" (k, a”), i.e., 

‘pi Cik $ i3 xv z’) = ‘pi (k + ‘11 X,+12 .7 X719 Z,ri+l’~ .I In’) (3.10) 

m+l,<i<% x, I’ cs X” (k, R”), and satisfy the equations 
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(Pi (k + 1, X” (k, X), X0 (k, X’)) = Xi” (k, rp (k, X, CC’)), m + (3.11) 

l<i< n; x, x’ E Rn 

Proof. By (3.81, r = I?* is the linear space spanned by the first m coordinate axes. 
Therefore (3.3) is equivalent to the equalities 

‘pi (k $_ 1, X0 (k, X) + r, X” (k, x’) + r) - Cpi (k + 1, X” (k, 

X), X"(k, 5')) = 0, m + 1 < i < n 

(3.12) 

This in turn is equivalent to (3.10). Similarly one shows that the inclusion (3.4) for 
system (3.71, (3.8) is equivalent to (3.11). Hence the statement of the theorem follows from 
Lemma 3.1. 

We now consider the multiplication law 0. Eq.(2.3) for system (3.1) is 

P (k + 1, h, X" (k, x) + Y" (k, z) u) = 

X” tkk, P (k, a, 5)) + Y” (k, p (k, Ir-, z)) q (k, x, A, u) 
(3.13) 

Definition 3.2. We shall say that Eq.(3.13) is solvable at time k if there exist func- 

tions P (k, A, s),p (k + 1, h, x), q (k, 5, h, U) of h, z:, u satisfying (3.13) for all h F R, x E R”, 
u E R”‘. 

Arguments similar to those used above for addition yield the following propositions. 

Lemma 3.2. Eq.(3.13) is solvable at a time k if and only if there exist functions P (k, 
a, d, P (k + 1, a, z) of k,z such that for all hi R,zr= R” 

p (k + I, h. X” (k, x) + J?,) - P (k + 1, L X” (k, 4) E rm~.r> 
p (k + 1, h, X" (k, z)) - X" (k, p (k, A, I)) E rpv,~.x) 

(3.14) 

Eq.(3.13) for system (3.7), (3.8) is 

P (k + 1, 1, X” (k, z) + You) = X” (k, p (k, 7L, x)) + (3.15) 

Y% (k, x, h, u) 

Theorem 3.2. Eq.(3.18) is solvable at a time k if an only if there exist functions 
P (k A, x), P (k + 2, A, z) of r, L such that the coordinates pi (k + 1,&r) with m + 1 < i .< n 
are independent of the components xi with 1,<j<m,x~X”(k,R”), i.e., 

p: (k + 1, h, Z) = pi (k + 1, h, zmcI, . . ., I,,), m + 1 S i < n, z E X” (k, R”) (3.16) 

and satisfy the equations 

pi(k+l,X,X”(k,z))=Xi”(k,p(k,h,s)), m+l,< i<n, XER~ (3.17) 

4. Solution of the compatibility equations. The following propositionisobvious. 

Theorem 4.1. Let H(X): Rn+R” be a bijective mapping of Rn onto R". Then the 
operations of addition @", and multiplication by scalars oI defined by the formulae 

xe*s' ds H-l (H (z) + H (cc’)), 3, Qs dz H-’ (hH (5)) (4.1) 

determine a new linear space structure on R” , with zero element 8 = H-l (0), and the mapping 
x-+ H(x) is an isomorphism of the new linear space R" relative to @%, Q, and the original 
Euclidean space R” relative to ordinary vector addition x+x' and multiplicationbyscalars 
?Ux. 

We propose the following problem: define a bijective mapping x+ H(k,x) in such a way 
that the functions defined according to (4.1) 

‘P (k, x, I’) 2 H-l (k, H (k. I) + H (k, x’)) 

p (k, A, 5) 2’ H-l (k, hH (k, 2)) 

(4.2) 

will satisfy (3.10), (3.11), (3.16), (3.17). Here k is a parameter and H-r (k;) is the inverse 
of the mapping x -+ H (k, x), i.e., H-l (k, H (k, x)) s 2. 

Put 

We will confine our discussion to the simplest 
solvable by explicit formulae for % PY % Q. 

case, when the compatibility equations 
are 
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Define a mapping H(k,z) by 

We need an additional simplifying assumption: the functions defined by (4.2) must satisfy 
the condition 

'pi (k + 1, 5, .r') = JZi + Zi', p' (k + 1, h, Z) = hri, Ii2 + 1 <i < n (4.5) 

In particular, condition (4.4) will hold if n - m,<m, i.e., nQ2m, since in that 
case (4.5) follows from the last formula of (4.5). Condition (4.5) will also hold if the 
components Hi (k, x), m + 1 < i G: IL, can be written as 

N"'(k, r)=H~'(k)&), H"' = . 1’:; 1, jl_l_l ::I: 1 

where Ho(*) (k) is some non-singular (n-m) X (n-m) matrix. 
When condition (4.5) is satisfied, so are conditions (3.10) and 

and (3.17) become 
(3.16), and Eqs.(3.11) 

Xj” (k, x) -t Xi” (k, d) = Xi” (k, cp (k, x, cd)) 

hXi” (k,! x) = Xi’ (k, p (k, h, x)), m + 1 < i -< n 

which, in terms of the notation (4.3), may be rewritten as 

Z (k, z) + Z (k cd) = Z (k, ‘p (12, x, d)), hZ (k, x) = 

Z (k, P (k, h, ;c)) 

(4.0) 

(4.7) 

By (4.4), we see that cp and p as defined by (4.2) satisfy (4.7). Hence, in view of 
Theorems 3.1, 3.2 and 4.1, we obtain the following 

Theorem 4.2. Let condition (3.8) hold, let r+ H(k, x), x-+H(k + 1,x) be bijections 
of R” onto R” and cp,p functions defined by (4.2) and satisfying condition (4.5). Then 
cp (k,x,x’),p(k,h,x) define a new linear space structure in R” relative to the operations e;',, 

0% defined by (l.l), (2.1), with zero element 0 (k)= H-l(k,O); the mapping x- H(k,x) is 
an isomorphism of the space relative to @2,0X and the Euclidean space R’” relative to 
ordinary addition 5 +x1 and multiplication by scalars hs; the compatibility Eqs.(3.9) and 
(3.15) are solvable at a time k, and the functions 'p, p defined by (4.2) are their solutions 
for certain functions II, (k, I,z', U, IL'), q (k, h, x, u). 

We must now determine the functions 9 and g defining a composition law for the controls 
in accordance with (1.2), (2.1). It is obvious that the functions (p,p defined by (4.2) 
satisfy Eqs.(4.7), which are just the last n-m equations of systems (3.9) and (3.15). The 
functions 0 and q, in their turn, are found from the first m equations of systems (3.9) and 
(3.15), which can be expressed in the following form. Denote 

‘~1 (k, a, r’) 
tp(m) (k, z, 2’) % . . . . . , 

I i 

Pl(k, h, 2:) 
PC”) (k, A, I) %f . . . . . 

cp,(k, 2, I’) i I 
(4.8) 

Pm (k, b z) 

Then, in view of (3.8) and (4.3), we obtain from (3.9) 

rp(m) (k + 1, X” (k,] x) + You, X” (k, x’) + You’) = 

F (k, ‘p (k, x, x’)) + Y$ (k, x, x’, u, u’) 

Hence, by (3.8)) we can write 

11 (h-3 5, x', u, u') = Y-' f#'") (k + 1, X” (k, x) + Y%, 

X” (k, x’) + You’) - F (k, ‘p (k, x, x’))l 

Similarly, we derive from (3.15) 

(4.9) 

q (k 2, L u) = Y-' Ip("') (k + 1, h, X" (k, x) + Y%) - 
F (k, P (k, L s))l 

(4.10) 

The remainder of this section is taken up with the proof that definitions (1.3) and (2.2) 
define a linear space structure on the set R” x R” relative to operations @ and 0, which 
is compatible with the dynamics of system (3.7), (3.8). Consider the set A = R2” , denoting 

its elements by , x,ERR”, xE R”. Define laws @ and @ on h by 
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(4.11) 

Rewrite these relations in the equivalent form 

(4.12) 

The set Awith operations (4.12) will be denoted by A(k). Theorem 4.1 implies the following 

Theorem 4.3. Let (3.8) hold, let x+H(k, x), I-+ H(k + 1,x) be bijections of R” onto 
R” and m,p functions defined by (4.2) and satisfying condition (4.5). Then the operators 

(4.2) give A the structure of a linear space A(k) with zero ! 
@(k+ 1) 

I I o(k) - 
Put 

& (4 = 
X”(k, x) + You 

X 
: XER”, u=R”’ 

I 

Theorem (4.2), and Eqs.(3.9) and (3.15) imply the following 

Lemma 4.1. Under the assumptions of Theorem 4.3, A,(k) is a linear subspace of A(k). 
tit Q(k) denote the set R"XR" of all pairs (u,x), ZJE R", XE R”, equipped with 

operations (1.3) and (2.2) with functions $,q defined by (4.9), (4.10). Define a 
h: 51 (k) -+ A, (k) by 

Lemma 4.2. Under 
isomorphism of A0 (k) 

Proof. By (3.81, 
with the operations @ 

the assumptions of Theorem 4.3, Q(k) is a linear space and 
and 52 (k). 

h is a bijection. It will therefore suffice to prove that h 
and 0: 

h ((a, 2) 8 (~'7 5')) = h (u, z) fB h (u’, 5’) 

h (1 0, u (I)) = h @ h (u. I) 

BY (1.3), (4.13) andtha fact that ex= ax< we obtain 

h ((~3 2) 3 (u’, 2’)) = h ((u pu u’), (z “x I’)) = 
xc (k z ‘f, t’) + Y” (u fFu u’) 

s&-,x 

On the other hand, by (4.13), (4.11)) 

h (u, 2) Q h (u’, 2’) = 
XC&z) + Fu ~ x’(k,z’)+Ycu’ = 

z I-l 2’ 
‘p (k i_ l,.%?(k, I)-+ Y"u, X" (k,z') + Yk’) 

3 E.= 2’ 

mapping 

(4.13) 

h is an 

commutes 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

By (4.9) and Theorem 4.2, Eq.(3.9) is satisfied. It follows from (1.2) and (3.9) that 
(4.16) and (4.17) are identical , implying the truth of (4.14). The proof of (4.15) is similar. 

Theorem 4.4.. Let condition (3.8) hold, let x+H(k,x), I-+ H(k -I- 1,x) be bijections of 
R” onto R"land (p,p functions defined by (4.2) and satisfying condition (4.5). Then the 
operations (1.3), (2.2) with functions $,q defined by (4.9), (4.10) make the set of all 
pairs (U,X)E R”’ x R” a linear space Q(k), and moreover the composition laws @,o defined 
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by (1.41, (2.3) are compatible with the dynamics of system (3.7) at a time k. 

Proof. The laws and 0 were defined in such a way as to satisfy Eqs.(3.9) and (3.15). 
They are therefore compatible with the dynamics of system (3.7). That !! (li) is a linear 
space follows from Lemma 4.2. 

5. Linearizing isomorphism. We will now consider an isomorphism that will be used 
inSect.Gto construct an isomorphism of the linear space W of the initial non-linear system 
ontothelinear space Iv" of the linearized system. We define this isomorphism as the mapping 
z--f y = x (k, z) E R” obtained by solving the equation 

H, (k, 0 (k)) y = H (k, Z) when 0 (k) = Hwl (k, 0) 

Theorem 5.1. Let the mapping x--f H(k,x) be a bijection of Rn onto R" and let us ("') 

assume that the matrix of partial derivatives H,(k,x) is continuous in ,r6z R” and 

rank H, (Is, Z) = n for IC E. Rn (5.2) 

Then the mapping r-y =X (k, .r) defined by (5.1) is a bijection of R” onto Rn; it is 
uniquely defined together with its inverse 

y--t z : s (k, y) (5.3) 
by the equations 

H, (k, 0 (k)) x (k, x) = H (k, 2) (5.4) 

H.x (k, 0 (k)) Y = H (k, s (k, y)) (5.5) 

and the two mappings define an isomorphism of the linear space XE R" with zero element 0 (k), 
relative to the operations &,o, defined by (l.l), (2.1), (4.2), and the linear space y c R” 
relative to the natural operations +, . andzeroelement y = 0. Moreover, if p (k,h,z) is 
the function defined by (4.2), then the limits in the following formulae exist and satisfy 
the relations 

x (k, x) = ‘h’,” h-’ [p (k, h, z) - 0 (k)] = a@$ =) 
I 

15.6) 
A==0 

s (k, y) = F$ p (k, h-l, hy + 0 (k)) (5.7) 

It it is assumed that condition (4.5) also hold, then 

Oi (k) = 0, m + 1 < i < n 

Si (k, y) = y;, xi (k, X) = Xi, m + 1 < i < n 

,(5.8) 

.(5.9) 

Proof. By (5.2) and Theorem 4.1, x (k, I) is a composition of isomorphisms z--f H (k, 21, 
z' -+ Hz-l (k, 8 (k)) z’. Therefore x(ks 2) is also an isomorphism. Eqs.(5.4) and (5.5) follow 
from (5.1). By (4.2) 

H (k, p (k, h, z)) z h H (k, 5) (5.10) 

By the Implicit Function Theorem, p(k,h,x) is continuously differentiable. By (5.10)) 
p (k, 0, x) = 8 (k). Differentiate (5.10) with respect to h at h = 0: H, (k, 0 (k)) 8p (k, 0, x)/ah = 
H(k,z). In addition, 

p (k, L r) = 0 (k) i h ” ‘“$’ ‘) + o(h), lim h-10 (h) = 0 
1-O 

The last two expression, together with (5.4), imply (5.6). Since H(k, 0(k))= 0, it follows 

that H (k, hy i 8 (k)) = H, (k, 43 (k)) hy + D (h). By (4.2)) 

;i p (k, A-‘, Ly + 0 (k)) = ki H-’ (k, h-‘H (k, hy + 

8 (k))) = H-’ (k, H, (k, 8 tk)) Y) 

Hence, by (5.5), we obtain (5.7). Since s(k)= ~(k,O,s), (4.5) implies (5.8). Then 
(5.9) follows from (5.6) and (5.7). 

6. Synthesis of control systems using the isomorphism. Consider the linear 
approximation system for (3.7) : 

Y [k + 11 = X,” (k, 8 (k)) y [kl + y"u [kl, VE Rm, y E R” (6.1) 

where -XX" is the matrix of partial derivatives. Suppose that conditions of Theorem 5.1 are 
satisfied. We have x (k + 1, 2 Ik -I- 11) = y Ik + 11. By (3.71, (6.1), this implies the fundamental 
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equation for conversion of controls: 

x(k+l, x”(k,~)+~u)=X,“(k,~(k))x(k,t)+YOu (6.2) 
Applying the transformation y+s(k + i,~), we derive the following equivalent version 

of (6.2): 
X” (k, s (k, y)) + You = s (k + 1, X,’ (k, 8 (k)) y + You) (6.3) 

We assert that (6.2) and (6.3) are identities in the components with indices m+l,<i<n. 
By (3.6) and (5.9), we have 

xi (k + 1, X" (k, x) + You) = Xi0 (k, x), m + 1 < i < n 

From (5.4) and (4.4), we obtain 

(X,' (k, 0 (k)) x (k, x)ji = Xi0 (k, x), m + 1 < i < n 

(6.4) 

(6.5) 

where (*)i denotes the i-th coordinate. It is clear from (6.4), (6.5) and (3.8) that the 
vector components indexed m + I,(. i< n on the right and left of (6.2) are identical. By 
(5.9) this implies the same for (6.3). Therefore, by (3.8), Eq.(6.2) is uniquely solvable in 
v and Eq.(6.3) is uniquely solvable in u. 

Let n (k, 5, ~1, n (k, Y, 0) denote the solutions of Eqs.(6.2) and (6.3), respectively.Consider 
the mappings 

(5, u) -+ (y = x (k, x), v = u (k, x, u)) 

(Y, 0) --t (z = s (k, Y), u = u (k, y, v)) 

(6.6) 

(6.7) 

Since x aa s are inverses of one another and (6.3) is equivalent to (6.2), the mappings 
(6.6) and (6.7) are also inversesofone another. 

Let w" denote the set of pairs of functions (y Ikl, ulkl), defined by (6.1) for e<k< b. 

Theorem 6.1. Assume that (3.8) holds and that the following conditions are satisffed 
for a< k< b : 1) X (k, x) i s continuously differentiable with respect to XE IT; 2) the 
mappings x+H(k, x) are bijections of R" onto I?' and rank H,(k,x) = n for XE R"; 3) the 
functions 'p, p defined by (4.2) satisfy condition (4.5). Then the mappings (6.6), (6.7) define 
mutually inverse mappings 

W-W? (x~kl,uIkl)-+(yIkl=~(k,sIkl), u[kl= 

u (k, x Ikl, u [kl)) 

(6.8) 

w”-+ w: (y lkl, u Ikl) + (x lkl = s (k, y Ikl), u Ikl = 
u (k, Y RI, u [kl)) 

VW 

which are isomorphisms of the linear spaces W for system (3.7) and w" for (6.1) relative to 
the operations (1.4), (2.3) and f, ., respectively. 

Proof. ret x [kl, u Ikl satisfy (3.7) for a<k(b. We must prove that the pair y [k], 
v[kl, defined by (6.8) satisfies (6.1). By (6.81, (3.7) and (6.2), 

ylk + 11 = x (k + 1, x Ik + 11) = x (k + 1, X” (k, x [kj)+ 
y”u [kl) = X,’ (k, 8 (k))x (k, x Ikl) + Y=‘v IL1 = 
X,’ (k, 8 (k))y lkl + y”v [kl 

i.e., (6.8) is indeed a mapping W+ W'. It similarly follows from (6.3) that (6.9) is a 
mapping W"+W. 

Since (6.8) and (6.9) are mutually inverse mappings, it will suffice to prove that (6.8) 
is a linear space homomorphism 
the following lemma. 

W-w”. BY Theorem 5.1, x is an isomorphism; hence we have 

Lemma 6.1. Let 

Then 
x (k + 1, x,) = Y,, x (k + 1, G’) = Y,' 

Now let 
x (k + 1, x* @:+1x*1) = y, $- y*‘, x (k + 1, A &+?r*) zz= hy, 

y = x (k, x), v = v (k, x, u), y’ = x (k, x’), u’ = v (k, z’, u’) 

To prove that (6.8) is a homomorphism , it will suffice to show that 

Y + y'=x(k, r GxkQ, v + Y' = v (k, A- @ikz’, u &‘u’) 

Ay = x (k, h ex”r), hu = u (k. h slkx, h c&%) 

(6.10) 

(6.11) 

(6.12) 
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The fi 
Conditions 

rst part of (6.11) follows from Theorem 5.1; so we need only prove the second. 
(6.10) imply that (6.2) holds and x(/i + 1, X" (12, S') -1 Y" U') = N,' (f<, H (h-))X (i;, ,X') ~+ 

1'"u'. Put I* =x0 (!?, 2) + y"u, 5*' : S" (ii, J') + \-"(I'. Then by (6.2) , putting Y* =X (/i+ 1, I*), Y,' : 
x (It + 1, r++‘) , we obtain 

Y* = X," (k, '3(k))% (k, X)-t Y"v, y,' = X," (!?, 8 (k))x (I;, *') -+ E'"u', 

By (3.9), we have I* C~xkil.r,’ = x0 (k, IT C>-‘xk ,’ 5 ) + y” (U’s’,k u’). Hence, by Lemma 6.1, 

x (k + 1, X” (k., .D$-,” z’) + y (UG,uk u’)) = (6.13) 
X,” (k, 0 (k)) Ix (k, z) + x (k, z’)l + Y0 (u + II’) = 
Xx0 (k, 0 (k))x (k, z-<p,* 5’) + Y” (u + u’) 

At the same time, by the definition (6.2), it follows that for u(h-,@-‘," x', l,,.yuk u') 

x (k +- 1, X"(k, 5 &K.l") + Y"(u NQ!‘,,,%'))== (6.14) 

X,“(k, Q(k)) x (k, I @xk.r’) + Y”o (k, z %t;d, u ~&“u’) 

Subtracting (6.14) from (6.13) and using (3.8), we obtain (6.11). The proof of (6.12) is 
analogous. 
and W”. 

Thus the mappings (6.6) and (6.7) are indeed mutually inverse isomorphisms of w 

Now let 
X” (k, 0) 3 0, a < k < b (6.15) 

BY (4.41, it follows that 

0 [r;l = 0, a<k<b (li.lG) 

Let li, Y+ v (k,y) = D (k, y) E I?“’ be some mapping defined for k.> k,, y 5 K”. By (6.6), 
(6.71, it defines a mapping k,s-+u(k,x) = u (k,x(k,x), D (k,x(k,x))). As a result,we can consider 
systems (3.7) and (6.1) with feedbacks u (k, Y), u (k, y): 

.z Ik + 11 = X” (k, z lkl) +- You (k, x (k, z [kl), D (k, x (k, z [kl))) (B.l’i) 

y Ik + 11 = X,” (k, 0)~ [kJ -t_ Y”D (k, y Ikl) (6.18) 

By Theorem 6.1 andthedefinitions we have 

Corollary 6.1. Under the assumptions of Theorem 6.1, assume moreover that condition 
(6.15) holds, (y RI, n [kl) and (5 Kl, u WI) (a < k, -( k < k, < b) are elements of W” and W paired 
by the isomorphisms (6.8) and (6.9). Then y Vql = 0 if and only if 5 [k,l = 0. If in addition 
b= co, D (k,O)s 0 for k> k, and the mappings x (k, x), s (k, y) are continuous uniformly in 
k> k, at the points r = 0 and y = 0, then the trivial solution of system (6.17) is stable 
or asymptotically stable in the large (in Lyapunov's sense) if and only if the trivial sol- 
ution of system (6.18) has the corresponding property. 

Remark 6.1. In /3/ we generalized the results of /l/ to non-autonomous systems, and in 
/4/ we considered questions of the synthesis of discrete systems. 

7. Example. Consider the non-linear control system 

1, [k + 11 = z1 I!&, [kl -1 u [kl 
(i.1) 

.r2 [k -t 11 = (xz2 Ik] + 1)q lkl 

This is an instance of system (3.7) with m= 1, ,t = 2. By (4.3) and (4.4), 

8, (z) =m (sa2 [!+I + l)?, I!%], II, (z) = =* 

BY (4.2), II (cp) = H (z) $_ If W), whence, by (7.2), we obtain 

('p*Z + l&p, = (%2 + i)z, + ((%')Z + l)Sl', 'Pa = 32 + 2,' 

Hence, noting (l.l), we express the law eX in terms of the coordinates by 

(z Ox'% = 'F1 (k, r, z') = I& + 
~)~,‘I 

%')a + II-’ ICG + lb, + ((ra’y + 

(2 &+‘)t = q + z2’ 

Similarly, by (4.2), N(p)= M(I), whence it follows, by (2.1), (7.2), that 

(xz).T.+ ZF p, = (h*r,Z + I)-% (222 + l)s, 
(?bz', z)* G pz = hz, 

(7.2) 

The isomorphism x is defined by (5.4): 
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The linear approximation equations (6.1) are in this case 

1/1 lk + 11 = u PC], Y, [k + 11 = Y1 M (7.3) 
The first equation of system (6.2) may be written 

B (z)(+% + u) = L', B (2) = (Q + I)%,* + 1 (7.4) 
and the second becomes an identity. Under the control 0=0(y)= =y,+ by,, a= i, bz -0.25 
system (7.3) is asymptotically stable in the large. By (7.4), the isomorphism yields a 
control 

of system (7.1), under which, by Corollary 6.1, the trivial solution is asymptotically stable 
in the large. The same control is also obtainable using the following formula form /4/: 

II = ~mOh-'&J (h&s) 
* 
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DYNAMIC MODELLING OF UNKNOWN PERTURBATIONS 
IN PARABOLIC VARIATIONAL INEQUALITIES* 

V.I. MAKSIMOV 

The problems involved in the dynamic determination of the load acting on 
a membrane rigidly fixed on a horizontal frame are investigated, and the 
thermal flux in a thermostat is determined. These problems are treated 
as special cases of a more general problem: dynamic modelling of unknown 
characteristics in parabolic variational inequalities. The problem is 
solved by constructing an algorithm, stable to information noise and 
computing errors, based on methods of positional control theory /l, 2/. 
This algorithm may be regarded as a modification of an algorithm proposed 
in /3/ for control systems described by ordinary differential equations. 
A model problem is solved. The research reported, here relies on /3, 4/ 
and is a sequel to /5/. 

1. In /6/ (Vol.1, p.198) a numerical method of determining the deflection y (z.,t) of a 
membrane rigidly fixed on a horizontal frame with constant tension F , subject to a given load 

g (2, t) is proposed. 
We shall consider the inverse problem: to determine the load g(x, t) given the deflection 

Y (x3 2). Let B be the plane region bounded by the frame. Put 

u(x,t)=g(x,t)/F, K={u(.)~u(x)EH,~, u(x)<0 in Q) 

K+ = {u (-)I v (.) cz L, (It,, 61; If,‘), au/at E L, ([to, *I; H-l), 

7J (&J = %) 

Ho’ WI and H-‘(Q) are Sobolev spaces. The deflection process for a membrane subject to a 

*Prikl.Matem.Mekhan.,52,5,743-750,1988 


